NONLINEAR INTERACTIONS OF ION-SOUND WAVES
AND HELICONS IN A PLASMA

A. S. Kingsep

The methods of perturbation theory and statistical averaging over the phases of the oscilla-
tions were used to obtain the kinetic wave equations which describe three-plasmon processes
involving the merging of two ion-sound waves into a helicon and the scattering of ion-sound
by plasma particles with reradiation into a helicon. The rate of accumulation of whistles in
a turbulent plasma due to such nonlinear processes is estimated.

In a number of papers [1-3] dealing with turbulent heating of a plasma, data are presented which are
evidence of the fact that a plasma is heated due to buildup of ion-sound instability. In [4] an attempt was
made to detect ion-sound noise.

The direct observation of the latter is very difficult, and therefore in [4] measurements of whistles
(helicons) which had been radiated due to nonlinear processes with the participation of ion sound were per-
formed.

The dispersion equations for the mentioned branches of the oscillations have the form

o (k) = 0, [1 + (kbrp) 2" (0.1)
Qp (q) = 99,80, / Op.’, O, > Q> 0y, 0, ”Ho ’

Here w, Q@ are the frequencies and k, q are the wave vectors of the sound and the helicons, respec-
tively; the other notationis standard.

From Egs. (0.1) it follows in particular that for ion-sound and helicon frequencies which are of an
identical order of magnitude the latter have considerably longer wavelengths q <k; it is this which makes
it possible to observe them distinct from ion-sound for which k 3 rpg=l. The nonlinear transformation of
sound into whistles may occur via three-plasmon processes (Fig. 1a and b) and likewise via scattering of
ion-sound by plasma particles with reradiation into a helicon (Fig. 1c). If the sound frequency is close to
the ion plasma frequency, then the merging of two ion-sound plasmons into a helicon leads to the appearance
of a narrow spectrum of whistles having a frequency close to 2 Wpi in the plasma (this is shown in Fig. 2a,
where I(Q) is the intensity of the whistles).

The process shown in Fig. 1b is Cerenkov radiation of helicons by ion-sound plasmons and leads to
the radiation of helicons having very long wavelengths; the frequency of these helicons does not exceed the
width Aw of the spectrum of the ion-sound noise (Fig. 2b). And, finally, as a consequence of the nonlinear
scattering of waves by particles,helicons having @ < wg will be radiated (as a result of such scattering the
particles of the plasma must be heated, and consequently the waves may only "redden"). Thus, the process
shown in Fig. lc yields the spectrum of helicons depicted in Fig. 2c.

The theory of nonlinear interaction of waves in a plasma situated in a magnetic field has been devel-
oped in a number of papers by various authors [5-7]. However, for the specific calculations presented in
those papers general formulas are inconvenient. It is expedient to derive the kinetic equstions for waves
which describe the nonlinear transformation of jon-sound into helicons using the specific dispersion
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properties of both oscillation modes from the very out-

N S . -
AN 4 ~. wh set. The methods of calculation which shall be used have
s _ WV ﬁJ ’,&Q"M N been expounded with exhaustive completeness in [8].
0 a” - NS
a b ¢ 1. Three-Plasmon Processes with the
Fig. 1 Radiation of Helicons
The energy and momentum conservation laws
s \ allow both the merging of two ion-sound plasmons into
T, | ! b 7 c a helicon and Cerenkov radiation of helicons by ion-
I sound quanta. From the experimental point of view the
Q L2 \ Q first of these processes is of special interest, since for
Zay; A0 @y Wy ' a narrow spectrum of the ion-sound waves (w = “’pi) it,
Fig. 2 in turn, yields a clearly delineated narrow line in the

spectrum. At the same time the process of Cerenkov
radiation leads to the buildup of helicons having very
long wavelengths, which makes their observation diffi-
cult.

Assume that in the plasma there is a high level of ion-sound noise having a frequency close to the
ion plasma frequency. Since for helicons having a close frequency € (q) ~ w (k) the conditions q <k must
hold, the merging process is possible only for plasmons having oppositely directed wave vectors.

We shall assume that there are such plasmons in the spectrum. We shall make use of the number of
waves

Nk = Wk /(D;‘
as the spectral characteristic of the noise; here Wy is the spectral density of the oscillation energy. Then

the kinetic equation for the wave which corresponds to the process shown in Fig. 1a has the form

h
e 3o (k, @) ViVt — NN — No'Nd) (1.1)
k

If the level of whistles is small Wy <« Wy, then their intensity increases according to a linear law:
He? =~ 8 Dyw (k,q) NNy iQt (1.2)
" .

It is precisely this case which is realized in the experiment described in [4]. In order to calculate
the quantity w (k, @) we make use of the correspondence principle [8]; namely, we calculate w (k, ¢) as the
coefficient of the first term in (2) on the assumption that the level of the whistles is fairly low. Then

L) a

jq(z) = Skokq(Pkcpq—ks k= (k’ )
(1.4)
Eq® = dkBys@0n, 9=(a, Q)

where ¢, is the potential of the ion~sound oscillations over whose phases averaging is carried out in (1.3).
All other combinations of nonlinear currents and fields either are not included in the first term of Eq. (1.1)
or vanish as a result of statistical averaging over their phases.

The initial system of equations is
vp“
n%m,

ana. 3 a:a —_
37 4 div (n*v*) =0

(1.5)
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Solving Eq. (1.5), one may neglect the ion pressure in the ion-sound oscillations, while for electrons
one may place y =1. As far as the helicons are concerned, the thermal corrections for them are in general
negligible. Purther, in the indicated frequency range the ion-sound may be considered unmagnetized (i.e.,
one may neglect the corrections associated with the magnetic field in the shortwave terms).

In the first approximation in the amplitudes of the fields we obtain

(L)e

i e
Vio = (krpe)”? T kop, 7ps= =%

4rne?
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@ M k
. e (1.6)
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In the next approximation in the amplitudes of the fields the system (1.5) yields
3 i A k2
v = 5 (—;7) Sdk 5&;—(9-‘]_'7) (PrPg-t ~ {PrPg-1>) (1.7)
1 2 (I®y,) ®g. I‘”He‘ﬂ

V(g)c = 5 (}W‘De) ( \ Sdk a;*@“— { ngi - Hg (%‘Pq—n - <‘?zc%—:;/) {1’8)

In (1.7}, (1.8) we retain only those terms having field combinations which are included in the first
term of Eq. (1.1).

From (1.6)-(1.8) we can obtain the required nonlinear current:

jq(%) - z ey (nov(z)“ 4 S dkn&tl)a"'l(ll_)z)

s, &

With an accuracy of up to terms of order w /wye, (Krpg) -4 we have

2 Tof (%)28&—————-@ (gkim) (PrPg-r — (PxPg-r)) {{Qi(x) @ }k+ ["“‘ ”“}‘1 ~2Xa = QEm } (1-9)

Further, the nonlinear currents and fields are interrelated by the equation

e 4iQ |
(925@:5 - g% — 7{%‘) ER = = i@ (1.10)
where
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As a result of simple algebraic transformations one can obtain
E® = A(q, ) i (1.11)
from (1.10).
Here the tensor Aij has the following form with an accuracy of up to terms ~Q /WHe:

4nQ®
e (

, QF
Ay =1 Q4 — Q37 @y =~ 2% qzq:acz 8(Q —Qq) Qy (1.12)
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The components of the tensor Qij» where i, j=1, 2, 3, are determined by the following expressions:
Qu=a+4¢> Qn=qq +.i9‘hv Q21 = gaqy — i9q,, Qo2 = @ + ¢t
st = iz =

Substituting (1.12) into (1.3), (1.4) and carrying out statistical averaging over the phases of the waves,
we obtain

1
o = g (kT A g [0} @

Then, finally, going over from Fourier components in the space (k, w; q, @) to Fourier components
with respect to k and g, we obtain an equation of the type (2) after simple transformations, where the
matrix element has the form

x 0,50 8(Q—op—o, )

wk Q) =7 o i 779" AMA
A={A e (Li_t - -
~les —o)et (G -a)i-2 et Aw=Regy

Equation (1.13) acquires a very simple form for the case of narrow ion-sound spectra when @ ~ 2w =
2wpj. Inthis case

nmpis [i} (Qq — o) — wq_k) [ 1

ki kq\?
v @ = — T2, — 2 e teua) + 4 (51) (@t + (k1.0

(1.14)

Hg) Ho kHo) H
TR 1

Under the conditions of the experiment described in [4] (i.e., for a small initial level of whistles) the
growth of the intensity of the whistles takes place according to the following law on the basis of (1.2):

2
B~ Tl o, w={aw, (1.15)

noMc?

This result coincides with the estimate made in [4] and is in good agreement with experimental data.
Under these conditions the radiation spectrum corresponds to Fig. 2a.

2. The Scattering of Ion Sound by Particles with Reradiation into Helicons

The process of ion-sound scattering by particles with reradiation into whistles (the diagram shown in
Fig. 1¢) may be described by the following kinetic equation:

aN b
—L =N Dk q) Ny =21z @ Ny 2.1)

It is easy to see that unlike Eq. (1.1) an equation of the type (2.1) has only exponential solutions (i.e.,
if pumpover of ion sound into the helicons can actually occur effectively via scattering of particles, then an
exponentially rapid growth of the level of the whistles must be observed experimentally). For the process
displayed in Fig. 1c the structure of the particle distribution function is essential; therefore, instead of the
system (1.5) it is necessary to solve the system of equations developed by A. A. Vlasov using perturbation
theory. In order to reduce the excessively cumbersome calculations we shall solve a model problem: non-
linear interactions of waves belonging to two one-dimensional spectra (i.e., we place ¢ Ikl Hy). This allows
us at the same time to eliminate three-plasmon processes from consideration; the probability of these
processes, as can easily be seen from (1.14), vanishes in this case. Henceforth we shall indicate the ex~
tent to which the result may change when the transition is made from one-dimensional spectra to three-
dimensional ones. As the original system of equations we shall take the Maxwell equations and the kinetic
equations

P (5), (B ) =0, a=ie @2

In order to calculate the probability w (k, @) which is incorporated in Eq. (2.1) it is necessary to ob-
tain the nonlinear current
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W= ne, g &y dy

which is proportional to a combination of fields of the type ¢ gok'Eq.

In the first approximation the solution of Eq. (2.2) is

a(1) e kdf* [ dv
fkl = <_)a(ﬂ —kv i P 8>0
. Edftfov
(1) _ . [ € q
? _—Z(_M—) Q—qv
@
— a 2.3
f;(n=m£H pl@— "")"’{Qexp t(Q qv)(p qu>+c} (2.3)
e

_ ) _ a 2n P
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He g He
Using simple transformations (see, for example, {9}), the expression for a longwave electronic per-
turbation may be represented in the form of a series whose principal term takes the following form with
allowance for the smallness of the ratio Q/whet

2T,
f;(l) __]ce » UTe —_ T (2.4:)

®q, ”T

A correction of the same order of magnitude appears in the nonunidimensional spectrum. Here and
further on we assume that the unperturbed distribution functions f@ are Maxwellian — this allows us to
represent the results in finite form.

Let us write out the equation of the third approximation in the amplitude of the field for longwave
perturbations;

—i(Q@ - f® — om0 an
- _ (H>mgdk’ (Ek, + % x k' x Ek> £,

(2.5)
- (%)agdk’ —da; i ( EQy + g x (g — K') x EZ)

The vectors k' and q—k' in the right side of (2.5) simultaneously belong to the longwave (helicon)
or shortwave (ion-sound) regions of the spectrum. In calculating the term which is proportional to the
combination of fields ﬁf’kﬁ”k'E 1, one should refain summation only over the shortwave region in the right
side of (2.5); all other terms contalmng such a combination of fields vanish as a result of averaging over the
phases. As a result, Eq. (2.5) is substantially simplified:

. =4 o ; 9 2 %
— 1@ — a3 — 0w 2150190 = i( ) -\ Ak ki@ + (4 — k) A2 (2.6)

Thus, in the second approximation it is necessary to calculate only the longwave perturbations fg(z).
The result of the calculations has the form

a@ _ .fe %2 1 (Ev) 2% 8
sz o l(Tn—)anqcPk—qw__““kv‘ —+i8 [(1 + -‘gz—v') Eq — g} q %1 av

©—Q—kvtie
,_[i) Sd kaf*® /oy
\m Ja ko —Kvtis

2.7)

In Eq. (2.7) terms which do not contain the required combinations of fields are omitted.

It may be shown that the nonlinear potential Pr @) in the one-dimensional model vanishes in accordance
with the results of the preceding section which were obtamed in the hydrodynamic approximation.

Let us first obtain the kinetic equations for the waves which describe scattering by ions. Inthe sec-
ond approximation we have
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A2 = (dgVy, Eorq (2.8)

\2[ 8jov koyt ) av

_fe kd jov  Bft v
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w—kvtiec o —Q—kvtie +m——kv+is Q—qv (2.9)

From (2.6), (2.8), (2.9) one can easily obtain

kd Jov
Q—qv

19 = = - {dhdg’ Ver, e EgPie-ne

Henceforth in averaging over the phases of the ion-sound oscillations the integration with respect to

dq' is removed because of the &~function 6 (q—q') 6 (2 —2'). We shall assume that this operation has been
performed. For the nonlinear current j(3) we obtain the following expression:

. : Ev)f kqug2
j(:);:SneféanvdV: 4stne (_e__>3§ dklcplzﬁg dyy K213V (Ey f { v, f T kv }

gt \M O—qv 0 —Q—kv—ie |lo—kv—ig ' 2 (@—qv)? Q—qv
i (2.10)
T,
vr =51
We substitute Eq. (2.6) into the equation
oW | 8t = J®E

and perform averaging over the phases of the longwave oscillations. Going over to the Fourier components
with respect to k , g, we obtain

w
k= (k|10

where

. iz_ 120 (B,v) (B, *v) (kv) fl kqu_z (E,v) (E V) /‘i
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(kv) (Eqv) (Bg*v) f*

T o —0—kv—ie) (Q—qv) (2.12)
Only the real part of &kq and consequently the imaginary part of the integrals included therein are

essential for the evolutionofthe spectrum. However, the imaginary contribution from the bypassing of poles

of the type (w—kv) -1 @ —qV)-!is exponentially small. This allows simplification of the expression for

Pkq:

Op (e 2kq(m—$2 08 ’ﬂﬂ’n’)l (av (Eqv) Bgv) 1 (2.12)
)

_Red)kq:""‘ani‘ \T ] OF o Q + 208 ©0—Q—kv—ie

The integral which is included in this equation can be reduced to Cramp functions and acquires an
especially simple form for a small frequency difference

o —Q <1

lt:vTi
As a result we obtain an equation of the type (2.1):

Wy i
< = 21a' (9) Nq
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9 (2.13)
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Calculations are carried out analogously when scattering by electrons is considered. We shall not
present these calculations in view of their still more cumbersome nature, but we shall present the result
immediately: the estimate for a nonlinear growth rate 'y(e (9} describing scattering with reradiation via

. H
electrons is
e P~ 5 Ny, (o \3/ g 2bk

TH()(Q)NZVR@WSW(}W;E) (q) - {2.14)

Thus,
=7 2/ \3
Y&?~N§’]/%(o—,9-) (7‘—) (2.15)
He ?

i.e., under typical experimental conditions (in particular, in the experiment described in [4] also) scattering
by ions introduces a more substantial contribution to the evolution of the spectrum.

All of the calculations carried out in the present section were carried out within the framework of the
one-dimensional model kil gl H,. Inthree-dimensional spectra ’)/H(l)may vary by an amount of the same
order,

As far as the quantity yg) is concerned, it follows that in solving Eq. {2.6) in the non-one-dimensional

spectrum the results may be larger by a factor of wHe/ﬂ. The ratioy (e)/'y () remains small in this case
also.

In [4] the integral density of ion-sound noise, as measured from the intensity of the radiation of
helicons due to three-plasmon processes, turned out to he of the order of 1072 erg/cm?. For the plasma
parameters n~ 10* ecm=3, T~ 100 eV one may calculate

10 S,y 1078
from (2.13).

For a recording time T ~ 0.1usec we obtain 'y(l) T < 107%; i.e., the helicons radiated due to scattering
of ion sound by particles cannot be recorded. In fact, no exponential growth of the energy density of the
helicons was observed in the experiment described in [4]. At the same time a clearly defined intensity peak
of the longwave noise was recorded for @ ~ 2 Wpi» the energy density being of an order of magnitude corre-
spondingto Eq.(1.15).

The author thanks L. I. Rudakov for supervising the work.
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